Laatste versie
3.8.6

Weka is a popular machine learning software created by the Machine Learning Group at the University of Waikato, based in Hamilton, New Zealand. It is a collection of algorithms for data mining tasks that are particularly well-suited for analysis and predictive modeling. Weka's user-friendly interface makes it easy for both beginners and experts to work with complex datasets and machine learning tasks.

One key feature of Weka is its comprehensive set of tools for data preprocessing, classification, regression, clustering, association rules mining, and visualization. Users can explore their data, run experiments, and generate models to gain insights and make data-driven decisions.

With Weka, users can preprocess raw data by cleaning, filtering, and transforming it to improve the quality of input for machine learning algorithms. The software offers a wide range of options for data preprocessing, including normalization, attribute selection, and missing value handling.

For classification tasks, Weka provides a variety of algorithms such as decision trees, support vector machines, k-nearest neighbors, and random forests. Users can evaluate the performance of these algorithms using cross-validation, confusion matrices, ROC curves, and other techniques.

In addition to classification, Weka supports regression analysis for predicting numerical values based on input features. Users can compare different regression models and select the most suitable one for their specific dataset.

Furthermore, Weka includes clustering algorithms for discovering patterns and groups in unlabeled data. By applying clustering techniques such as k-means or hierarchical clustering, users can uncover hidden structures and relationships within their datasets.

Another strength of Weka is its support for association rules mining, which enables users to find interesting relationships between variables in large datasets. This can be useful for market basket analysis, recommendation systems, and other applications that rely on identifying patterns in transactional data.

Moreover, Weka offers various tools for visualizing data and model outputs. Users can explore the results of their analyses through interactive visualizations such as scatter plots, decision trees, and ROC curves.

Weka is a versatile and powerful tool for machine learning and data mining tasks. Its rich set of algorithms, user-friendly interface, and comprehensive documentation make it an ideal choice for researchers, students, and professionals looking to leverage the power of machine learning in their projects.

Overzicht

Weka is Freeware software in de categorie Onderwijs ontwikkeld door Machine Learning Group, University of Waikato, Hamilton, NZ.

In de afgelopen maand werd het 63 keer gecontroleerd op updates door de gebruikers van onze applicatie UpdateStar.

De nieuwste versie van Weka is 3.8.6, uitgegeven op 10-07-2024. Het werd aanvankelijk toegevoegd aan onze database op 29-10-2007. De meest voorkomende versie is 3.8.6, die wordt gebruikt door 100% van alle installaties.

Weka draait op de volgende operating systems: Windows.

Gebruikers van Weka gaven het een beoordeling van 3 op 5 sterren.

Installaties

63 gebruikers van UpdateStar had Weka vorige maand geïnstalleerd.
Veilige en gratis downloads, gecontroleerd door UpdateStar

Blijf actueel
met UpdateStar freeware.

Recente beoordelingen

P PDFPower
Breng een revolutie teweeg in uw PDF-ervaring met PDFPower!
T Thunderbolt™ Software
Verbeter uw Thunderbolt-ervaring™ met de software van Intel
Microsoft Visual C++ 2013 Redistributable Microsoft Visual C++ 2013 Redistributable
Verbeter de prestaties en stabiliteit met Microsoft Visual C++ 2013 Redistributable
Logiciel de base du périphérique HP Deskjet 3520 s Logiciel de base du périphérique HP Deskjet 3520 s
Logiciel HP Deskjet 3520 s
Lenovo PowerDVD Lenovo PowerDVD
Dompel jezelf onder in de ultieme media-ervaring met Lenovo PowerDVD!
M Microsoft Visual Studio 2005 Tools for Applications Runtime
Efficiënte runtime-omgeving voor Microsoft Visual Studio 2005 Tools for Applications
Huidige nieuwsbrief